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Number theory has always fascinated me, since long before I started writing
software or thinking about small government. From an early age, I studied the
integers as a hobby. I learned that each natural number has its own unique
properties. 6 is the first perfect number. 7 is the first odd prime for which 2 is
not a primitive root.

As it happens, 59 is an especially interesting prime number. Below are some
of the ways that 59 stands out.

1 Sums of Three Squares

Among primes that are 3 more than a multiple of 8, 59 is the first that can be
expressed as a sum of three squares of positive integers in more than 3 ways.

Every prime p where p ≡ 3 (mod 8) is a sum of three squares of positive
integers. Including permutations, there are at least three such representations,
except for the special case of 3 itself where there’s only one.

3 = 12 + 12 + 12

11 = 12 + 12 + 32

= 32 + 12 + 12

= 12 + 32 + 12

19 = 32 + 32 + 12

= 12 + 32 + 32

= 32 + 12 + 32

43 = 32 + 32 + 52

= 52 + 32 + 32

= 32 + 52 + 32
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That’s the complete list for 3, 11, 19 and 43. But 59 can go further. We can
imagine 59 saying ”hold my beer” and then showing what he’s got:

59 = 52 + 52 + 32

= 32 + 52 + 52

= 52 + 32 + 52

= 72 + 12 + 32

= 32 + 72 + 12

= 12 + 32 + 72

= 12 + 72 + 32

= 32 + 12 + 72

= 72 + 32 + 12

That’s a total of 9 representations, 3 times as many as 43 has.
You might think the number of ways to represent p as the sum of three

squares would be fairly random, but actually for p > 3 it’s equal to 3 times the
class number of the imaginary quadratic field Q(

√
−p). More on that later. But

first let’s look at another intriguing characteristic of 59.

2 Fermat’s Last Theorem as a Congruence

Among primes p where p ≡ 2 (mod 3), 59 is the first where there are integers
x, y and z satisfying

xp + yp ≡ zp (mod p2)

with p not dividing x, y or z.
In 1637, Pierre de Fermat first stated his famous Last Theorem: xn+yn = zn

has no solutions in positive integers with n > 2. He claimed to have found a
marvelous proof which wouldn’t fit in the narrow margin where he was writing.
The problem remained unsolved until 1995 when Andrew Wiles finally published
a proof after years of effort, building on the work of many other mathematicians.

Fermat did give a proof for the exponent n = 4, so what remained was to
prove that

xp + yp = zp

has no solutions in positive integers for odd prime p. We can assume that x, y
and z have no common divisor, since any such divisor could be divided out.

One of the first mathematicians to investigate Fermat’s Last Theorem was
Sophie Germain. She made significant headway on what is known as Case I,
where p does not divide x, y or z. She proved Case I for all odd primes p < 100.

For now, let’s take a different tack, and ask whether Case I even has any
solutions as a congruence. We’re going to look for a positive integer k where

xp + yp ≡ zp (mod pk)
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has no solutions with p not dividing x, y or z. For k = 1, there is always a
solution, but once we step up to k = 2, things get interesting. Let’s start with
p = 3.

13 = 1 ≡ 1 (mod 32)

23 = 8 ≡ 8 (mod 32)

43 = 64 ≡ 1 (mod 32)

53 = 125 ≡ 8 (mod 32)

73 = 343 ≡ 1 (mod 32)

83 = 512 ≡ 8 (mod 32)

Evidently we could have stopped at 23, because the pattern repeats after
that. In general, when a ≡ b (mod p), we have ap ≡ bp (mod p2). In view
of Fermat’s little theorem, we must have z ≡ x + y (mod p). Further, we can
assume that x = 1, since x is invertible modulo p and we can divide it out. So
the congruence to be satisfied is

1 + yp ≡ (y + 1)p (mod p2)

It’s enough to consider values of y between 1 and p − 2. If none of these
satisfy the above congruence, then Case I is proved for that exponent p. When
p = 3, the only candidate for y is 1, which doesn’t work, so that proves Case I
for the exponent 3.

When p ≡ 1 (mod 3), there are always at least 2 solutions. These are the
y values of order 3, that is, where y3 ≡ 1 (mod p). There are 2 such y values,
and each is the square of the other modulo p. The example of p = 7 will be
instructive.

17 = 1 ≡ 1 (mod 72)

27 = 128 ≡ 30 (mod 72)

37 = 2187 ≡ 31 (mod 72)

47 = 16384 ≡ 18 (mod 72)

57 = 78125 ≡ 19 (mod 72)

67 = 279936 ≡ 48 (mod 72)

So y can be either 2 or 4, leading to these solutions:

1 + 27 ≡ 1 + 30 = 31 ≡ 37 (mod 72)

1 + 47 ≡ 1 + 18 = 19 ≡ 57 (mod 72)
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The exponents 7, 13, 19, 31, 37 and 43 each have only the 2 solutions where
y3 ≡ 1 (mod p). In general for p ≡ 1 (mod 3), if there are any other solutions,
they will come in bunches of 6, as we’ll see later.

What if we try increasing k, to find a proof of Case I for exponents like 7?
Alas, when there is a solution modulo p2, it can always be adjusted to become a
solution modulo p3 or any higher power. For those familiar with p-adic numbers,
if our congruence with k = 2 has a solution, then the original Fermat equation
has a p-adic solution with x, y and z all having ”absolute value” 1.

When p ≡ 2 (mod 3), solutions seem to be rare. There are no solutions when
p is 5, 11, 17, 23, 29, 41, 47 or 53. So Case I is proved for these exponents. We
can envision 59 looking at all those lower primes with barely hidden contempt,
saying ”hold my Perrier” and then showing how it’s done:

1 + 359 ≡ 1 + 298 = 299 ≡ 459 (mod 592)

1 + 5559 ≡ 1 + 3182 = 3183 ≡ 5659 (mod 592)

1 + 3859 ≡ 1 + 805 = 806 ≡ 3959 (mod 592)

1 + 2059 ≡ 1 + 2675 = 2676 ≡ 2159 (mod 592)

1 + 4459 ≡ 1 + 1106 = 1107 ≡ 4559 (mod 592)

1 + 1459 ≡ 1 + 2374 = 2375 ≡ 1559 (mod 592)

1 + 459 ≡ 1 + 299 = 300 ≡ 559 (mod 592)

1 + 5459 ≡ 1 + 3181 = 3182 ≡ 5559 (mod 592)

1 + 4359 ≡ 1 + 1105 = 1106 ≡ 4459 (mod 592)

1 + 1559 ≡ 1 + 2375 = 2376 ≡ 1659 (mod 592)

1 + 4759 ≡ 1 + 1404 = 1405 ≡ 4859 (mod 592)

1 + 1159 ≡ 1 + 2076 = 2077 ≡ 1259 (mod 592)

Not just 1, but 2 bunches of solutions. Generally, solutions come in bunches
of 6, because when you find one where y is not of order 3, the following pattern
will generate 5 others (where division is modulo p):

1 + yp ≡ (y + 1)p (mod p2)

1 + (−y − 1)p ≡ (−y)p (mod p2)

1 + ((−y − 1)/y)p ≡ (−1/y)p (mod p2)

1 + (1/y)p ≡ ((y + 1)/y)p (mod p2)

1 + (1/(−y − 1))p ≡ (y/(y + 1))p (mod p2)

1 + (y/(−y − 1))p ≡ (1/(y + 1))p (mod p2)
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3 Bernoulli Numbers

59 is one of only 3 irregular primes less than 100. The other two are 37 and 67.
A prime p is irregular if it divides the numerator of at least one Bernoulli number
Bk with even k <= p − 3. Ernst Kummer proved Fermat’s Last Theorem for
regular prime exponents.

Jakob Bernoulli discovered the numbers which bear his name as part of
generalizing this formula for the sum of the first n positive integers:

1 + 2 + 3 + ...+ n = n(n+ 1)/2

The generalized formulas look like this in modern notation:

1 + 2 + 3 + ...+ n = (B0n
2 − 2B1n)/2

12 + 22 + 32 + ...+ n2 = (B0n
3 − 3B1n

2 + 3B2n)/3

13 + 23 + 33 + ...+ n3 = (B0n
4 − 4B1n

3 + 6B2n
2)/4

14 + 24 + 34 + ...+ n4 = (B0n
5 − 5B1n

4 + 10B2n
3 + 5B4n)/5

15 + 25 + 35 + ...+ n5 = (B0n
6 − 6B1n

5 + 15B2n
4 + 15B4n

2)/6

16 + 26 + 36 + ...+ n6 = (B0n
7 − 7B1n

6 + 21B2n
5 + 35B4n

3 + 7B6n)/7

17 + 27 + 37 + ...+ n7 = (B0n
8 − 8B1n

7 + 28B2n
6 + 70B4n

4 + 28B6n
2)/8

and so on, where

B0 = 1

B1 = −1/2

B2 = 1/6

B3 = 0

B4 = −1/30

B5 = 0

B6 = 1/42

and so forth are the Bernoulli numbers, and the coefficient of Bin
j is

(
i+j
i

)
, the

binomial coefficient of i+ j and i.
In this case, 59 is irregular because it divides the numerator of B44, given

below.

B44 = −27833269579301024235023

690

= −11 · 59 · 8089 · 2947939 · 1798482437

2 · 3 · 5 · 23

If ζ is a primitve pth root of unity, then p is irregular if and only if it divides
the class number of the corresponding cyclotomic field Q(ζ). When p = 59, the
class number of Q(ζ) is 41241 = 3 · 59 · 233.
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4 Case Study of a Number Field

A number field is obtained by starting with the rational numbers Q and adjoin-
ing one or more roots of a polynomial with rational coefficients. The resulting
field is an extension of Q having some finite degree n. Its ring of integers is
a free module of the same rank n over the ordinary integers Z. This ring of
integers does not necessarily have unique factorization, but its ideals do. If the
number field is a Galois extension of Q (which it will be if we adjoin all the
roots of the polynomial), then the way prime ideals of Z factor into prime ideals
of the extension is quite fascinating and beautiful.

We’re now going to do a case study of a number field, specifically Q(
√
−59)

= Q(i
√

59). That is, we’ll start with Q and adjoin a root of the polynomial
x2 + 59. This is a good example of the case where the ring of integers does
not have unique factorization, so we need to look at ideals. Because this is an
imaginary quadratic field, each ideal is a lattice in the complex plane, so it’s
easy to visualize.

Our first guess as to the ring of integers might be Z[i
√

59], but it turns out
this would omit half the algebraic integers. If we set

θ =
−1 + i

√
59

2
≈ −0.5 + 3.84057i

then θ is an algebraic integer, because θ2 + θ + 15 = 0. In fact, Z[θ] is the ring
of integers for this number field. Let’s go ahead and define K and R as our
number field and its ring of integers, respectively.

K = Q(i
√

59) = Q(θ)

R = Z[θ]

To see that R does not have unique factorization, observe that

15 = 3 · 5
= θ(−1− θ)

where 3, 5, θ and (−1− θ) are all irreducible elements of R.
You could say that 3 and θ ”ought” to have a greatest common divisor,

and that ideals were concocted to represent phantom greatest common divi-
sors like this. Actually, an ideal of a ring is a subset of the ring that’s closed
under addition and also closed under multiplication by any element of the
ring. A principal ideal is an ideal consisting of the multiples of some partic-
ular element. In the ordinary integers Z, every ideal is principal. For example,
[3] = {...,−9,−6,−3, 0, 3, 6, 9, ...}.

In our ring R, not every ideal is principal. For example, the ideal [3, θ] is
the set of all elements you get by adding a multiple of 3 and a multiple of θ.
If 3 and θ had a greatest common divisor, this ideal would consist of all the
multiples of that divisor.
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Let’s see what R looks like as a lattice in the complex plane, zoomed in so
we can label some points. A dotted-line parallelogram marks a fundamental
domain.

−3− θ −2− θ −1− θ −θ 1− θ 2− θ

−3 −2 −1 0 1 2 3

−2 + θ −1 + θ θ 1 + θ 2 + θ 3 + θ

r r r r r r

r r r r r r r

r r r r r r

pppppp
pppppp
pppppp
pppppp
pppppp
pppppp
pppppp
pppppp
p

pppppp
pppppp
pppppp
pppppp
pppppp
pppppp
pppppp
pppppp
pp p p p p p p p p p p p p p

Make a note of this matrix equation for later:
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θ

[
1
θ

]
=

[
0 1
−15 −1

] [
1
θ

]
Now let’s look at the principal ideal [2+θ]. Here we’ve zoomed out quite a bit,

so the original parallelogram appears much smaller. Large dots represent points
of [2 + θ], while small dots represent other points of R. Another parallelogram
appears, marking a fundamental domain of [2 + θ]. If you look carefully, you
can see that this parallelogram, and indeed the entire lattice, is just a copy of
the one for R, but scaled and rotated. The new parallelogram has 17 times the
area of the original one, but it has the same shape.

r r r r r r r r u r r r r r r r r r r r r r r r r u r r r r r r
r r r r r r r r r r u r r r r r r r r r r r r r r r r u r r r r r
r r r r r r r r r r r u r r r r r r r r r r r r r r r r u r r r
r r r r r r r r r r r r r u r r r r r r r r r r r r r r r r u r r
r r r r r r r r r r r r r r u r r r r r r r r r r r r r r r r u
r r r r r r r r r r r r r r r r u r r r r r r r r r r r r r r r r
u r r r r r r r r r r r r r r r r u r r r r r r r r r r r r r r
r r u r r r r r r r r r r r r r r r r u r r r r r r r r r r r r r
r r r u r r r r r r r r r r r r r r r r u r r r r r r r r r r r
r r r r r u r r r r r r r r r r r r r r r r u r r r r r r r r r r
r r r r r r u r r r r r r r r r r r r r r r r u r r r r r r r r

pppppp
ppp

pppppp
pppp pp p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p

p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p pp p p p p p
p p p

p p p p p p
p p p

Here is the analogous matrix equation for the basis we’ve chosen for [2 + θ]:
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θ

[
2 + θ
−15 + θ

]
=

[
0 1
−15 −1

] [
2 + θ
−15 + θ

]
Next we’ll look at [3, θ], which is not principal. Again, large dots are points

of [3, θ], and small dots are other points of R. Here, the parallelogram has 3
times the area of the one for R, but it has a different shape.

u r r u r r u r r u r r u r r u r r u r r u r r u r r u r r u r
u r r u r r u r r u r r u r r u r r u r r u r r u r r u r r u r r
r r u r r u r r u r r u r r u r r u r r u r r u r r u r r u r r
r r u r r u r r u r r u r r u r r u r r u r r u r r u r r u r r u
r u r r u r r u r r u r r u r r u r r u r r u r r u r r u r r u
r u r r u r r u r r u r r u r r u r r u r r u r r u r r u r r u r
u r r u r r u r r u r r u r r u r r u r r u r r u r r u r r u r
u r r u r r u r r u r r u r r u r r u r r u r r u r r u r r u r r
r r u r r u r r u r r u r r u r r u r r u r r u r r u r r u r r
r r u r r u r r u r r u r r u r r u r r u r r u r r u r r u r r u
r u r r u r r u r r u r r u r r u r r u r r u r r u r r u r r u

pppppp
ppp

pppppp
pppp p p p p p p

Here is the matrix equation corresponding to this basis for [3, θ]:

θ

[
3
θ

]
=

[
0 3
−5 −1

] [
3
θ

]
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Each of these matrix equations shows the effect of multiplying the basis by θ.
We can also say that the basis is an eigenvector of the matrix, with θ as the
eigenvalue. We’ll see the significance of these matrices later.
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The ideal [5,−1 − θ] is also not principal. In fact, it’s in the same class
as [3, θ] because [θ][5,−1 − θ] = [5][3, θ]. Generally, two ideals I and J are in
the same class if there are principal ideals [η1] and [η2] such that [η1]I = [η2]J .
What this means in the case of ideals of R is that one ideal’s lattice is just a
”scale and rotate” of the other’s.

In the diagram below, the parallelogram for [5,−1− θ] has the same shape
as the one for [3, θ]. It’s just been scaled a bit larger, and rotated clockwise.

r r r u r r r r u r r r r u r r r r u r r r r u r r r r u r r r
r r r r u r r r r u r r r r u r r r r u r r r r u r r r r u r r r
r r r r u r r r r u r r r r u r r r r u r r r r u r r r r u r r
u r r r r u r r r r u r r r r u r r r r u r r r r u r r r r u r r
u r r r r u r r r r u r r r r u r r r r u r r r r u r r r r u r
r u r r r r u r r r r u r r r r u r r r r u r r r r u r r r r u r
r u r r r r u r r r r u r r r r u r r r r u r r r r u r r r r u
r r u r r r r u r r r r u r r r r u r r r r u r r r r u r r r r u
r r u r r r r u r r r r u r r r r u r r r r u r r r r u r r r r
r r r u r r r r u r r r r u r r r r u r r r r u r r r r u r r r r
r r r u r r r r u r r r r u r r r r u r r r r u r r r r u r r r

pppppp
ppp

pppppp
pppp p p p p p p

ppppppppp
ppppppppp ppppppppppppp

And here is the matrix equation corresponding to this basis for [5,−1− θ]:

θ

[
−1− θ

5

]
=

[
0 3
−5 −1

] [
−1− θ

5

]
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The ideal [3,−1 − θ], shown below, belongs to the third and final class of
ideals in R. You can see that it’s the complex conjugate of [3, θ].

r u r r u r r u r r u r r u r r u r r u r r u r r u r r u r r u
r r u r r u r r u r r u r r u r r u r r u r r u r r u r r u r r u
r r u r r u r r u r r u r r u r r u r r u r r u r r u r r u r r
u r r u r r u r r u r r u r r u r r u r r u r r u r r u r r u r r
u r r u r r u r r u r r u r r u r r u r r u r r u r r u r r u r
r u r r u r r u r r u r r u r r u r r u r r u r r u r r u r r u r
r u r r u r r u r r u r r u r r u r r u r r u r r u r r u r r u
r r u r r u r r u r r u r r u r r u r r u r r u r r u r r u r r u
r r u r r u r r u r r u r r u r r u r r u r r u r r u r r u r r
u r r u r r u r r u r r u r r u r r u r r u r r u r r u r r u r r
u r r u r r u r r u r r u r r u r r u r r u r r u r r u r r u r

ppppppppp
pppppppppp p p p p p p

Here is the matrix equation to go with this basis for [3,−1− θ]:

θ

[
−1− θ

3

]
=

[
0 5
−3 −1

] [
−1− θ

3

]
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So there are 3 classes of ideals in R, and they form a group. Since the
order of the group is 3, the cube of any ideal in R is principal. For example,
[3, θ]3 = [3− θ].

The field K has exactly two automorphisms: complex conjugation which
takes θ to−1−θ and vice versa, and the identity map. These two automorphisms
form a group known as the Galois group of the extension.

The norm of an element u+ vθ in K (where u and v are rational numbers),
denoted N(u + vθ), is the product of u + vθ with its conjugate u − v − vθ.
The result is u2 − uv + 15v2, which is rational. When restricted to R (where
u and v are ordinary integers), the norm is an ordinary integer. For example,
N(2 + θ) = (2 + θ)(1 − θ) = 17. When we’re looking to factor the ideal [p] for
some prime p in Z, we would first look for an element of R whose norm is p. If
we find one, then [p] splits into two principal ideals. Otherwise, we would look
for an element whose norm is a multiple of p. For example, when looking to
factor [7], we would observe that N(2 − θ) = (2 − θ)(3 + θ) = 21 = 3 · 7. Thus
we would have [7] = [7, 2− θ][7, 3 + θ].

Below is a table showing primes of Z up through 59, and how their corre-
sponding ideals factor in R. When the prime is a quadratic residue modulo 59,
its ideal splits into two prime ideals in R. In this case, the second column shows
the quadratic residue. When the two ideals are not principal, the one on the
left is in the same class as [3, θ], and the third column shows why. If the prime
is not a quadratic residue modulo 59, then its ideal stays inert, meaning it is
still a prime ideal in R. 59 itself does something special: its ideal ramifies as
the square of a prime ideal in R.

[2] stays inert
[3] = [3, θ][3,−1− θ] 3 ≡ 112 [3, θ] = [3, θ]
[5] = [5,−1− θ][5, θ] 5 ≡ 82 [θ][5,−1− θ] = [5][3, θ]
[7] = [7, 2− θ][7, 3 + θ] 7 ≡ 192 [3 + θ][7, 2− θ] = [7][3, θ]
[11] stays inert
[13] stays inert
[17] = [2 + θ][1− θ] 17 ≡ 282

[19] = [19, 7 + θ][19, 6− θ] 19 ≡ 142 [6− θ][19, 7 + θ] = [19][3, θ]
[23] stays inert
[29] = [29, 8− θ][29, 9 + θ] 29 ≡ 182 [9 + θ][29, 8− θ] = [29][3, θ]
[31] stays inert
[37] stays inert
[41] = [41, 7− 2θ][41, 9 + 2θ] 41 ≡ 102 [9 + 2θ][41, 7− 2θ] = [41][3, θ]
[43] stays inert
[47] stays inert
[53] = [53, 11 + 2θ][53, 9− 2θ] 53 ≡ 172 [9− 2θ][53, 11 + 2θ] = [53][3, θ]
[59] ramifies as [1 + 2θ]2
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So how does all this relate to the number of representations of 59 as the
sum of three squares? To see the connection, let’s take a deeper look at those
matrix equations. For any given ideal I, we can choose a basis, i.e., a pair of
elements ω1 and ω2 such that every element of the ideal has a unique expression
as uω1 + vω2 for some u and v in Z. In particular, we have

θω1 = u1ω1 + v1ω2

θω2 = u2ω1 + v2ω2

for some u1, v1, u2 and v2 in Z. We can express this as a matrix equation:

θ

[
ω1

ω2

]
= M

[
ω1

ω2

]
where

M =

[
u1 v1
u2 v2

]
The matrix M behaves somewhat like θ, in the sense that

M2 +M +

[
15 0
0 15

]
=

[
0 0
0 0

]
which parallels the fact that θ2 + θ + 15 = 0. For example, in the case of the
principal ideal [2+θ], recall that we chose the basis ω1 = 2+θ and ω2 = −15+θ.
Then we had

θ

[
2 + θ
−15 + θ

]
= M

[
2 + θ
−15 + θ

]
where

M =

[
0 1
−15 −1

]
and M behaves like θ because[

−15 −1
15 −14

]
+

[
0 1
−15 −1

]
+

[
15 0
0 15

]
=

[
0 0
0 0

]
It turns out that for every ideal of R, there is a choice of basis that gives us

one of the three matrices below, M1 for a principal ideal, M2 for an ideal in the
same class as [3, θ], or M3 for an ideal in the same class as [3,−1− θ].

M1 =

[
0 1
−15 −1

]

M2 =

[
0 3
−5 −1

]
M3 =

[
0 5
−3 −1

]
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For those familiar with general linear groups, we can talk about what hap-
pens if we choose a different basis. If M is the matrix for one basis, then the
matrix for a different basis will be PMP−1 for some P in the general linear
group GL2(Z). More precisely, if MC2(Z, θ) is the set of 2x2 matrices with en-
tries in Z whose characteristic polynomial is the minimum polynomial of θ over
Z, then GL2(Z) acts on MC2(Z, θ) by conjugacy, and there is one orbit for each
ideal class, so the number of orbits is equal to the class number. Actually, a
statement similar to this is true for any monogenic field.

Each of our matrices M satisfies M2 + M + 15 = 0, where scalars denote
corresponding scalar matrices. From the trace we get u1 + v2 = −1, and from
the determinant we get u1v2 − u2v1 = 15. Now we can define the symmetric
matrix

A =

[
2v1 v2 − u1

v2 − u1 −2u2

]
It’s easily seen that the determinant of A is 59. Here are the matrices A1,

A2 and A3 corresponding to M1, M2 and M3:

A1 =

[
2 −1
−1 30

]

A2 =

[
6 −1
−1 10

]
A3 =

[
10 −1
−1 6

]
Each A corresponds to a quadratic form. In what follows, it will be important

that v1 > 0, so that the quadratic form is positive definite. We have chosen
M1, M2 and M3 so that v1 > 0. We can always swap ω1 and ω2 if necessary, to
ensure that this is true. Then for any x and y in Z,

[
x y

]
A

[
x
y

]
is a 1x1 matrix whose single entry is 2 N(xω1 + yω2)/N(I), where N(I) denotes
the ideal norm.

For those familiar with special linear groups, we can continue the discussion
about what happens if we choose a different basis. If MC+

2 (Z, θ) and MC−2 (Z, θ)
are the subsets of MC2(Z, θ) where v1 > 0 and v1 < 0, respectively, then SL2(Z)
acts on MC+

2 (Z, θ) and MC−2 (Z, θ) separately. For both actions, the number of
orbits is equal to the class number. For any P in SL2(Z), the symmetric matrix
corresponding to PMP−1 is PAPT .
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Next, we’re going to expand our symmetric matrix A by adding a third row
and column, so that the resulting matrix C has determinant 1. To do this, we’re
going to choose a and b in Z such than 2v1a

2 = 59b − 1. This will be possible
because v1 = N(ω1)/N(I) is a quadratic residue modulo 59, as is -2 since 59 ≡ 3
(mod 8). Then define

C =

 2v1 v2 − u1 0
v2 − u1 −2u2 a

0 a b


Here are the values of C for each of our symmetric matrices A1, A2 and A3:

C1 =

 2 −1 0
−1 30 18
0 18 11


C2 =

 6 −1 0
−1 10 7
0 7 5


C3 =

10 −1 0
−1 6 17
0 17 49


Finally, we’re going to express the inverse C−1 as the product of some matrix

B having determinant 1 with its transpose BT . This will be possible because
C−1 defines a positive definite ternary quadratic form with discriminant 1. The
sums of the squares of the bottom row of B will then be 59.

C−1 =

−2u2b− a2 (u1 − v2)b (v2 − u1)a
(u1 − v2)b 2v1b −2v1a
(v2 − u1)a −2v1a 59



C−11 =

 6 11 −18
11 22 −36
−18 −36 59

 =

−1 −2 −1
−3 −3 −2
5 5 3

−1 −3 5
−2 −3 5
−1 −2 3


59 = 52 + 52 + 32

C−12 =

 1 5 −7
5 30 −42
−7 −42 59

 =

−1 0 0
−5 −1 −2
7 1 3

−1 −5 7
0 −1 1
0 −2 3


59 = 72 + 12 + 32

C−13 =

 5 49 −17
49 490 −170
−17 −170 59

 =

 0 −2 −1
−3 −20 −9
1 7 3

 0 −3 1
−2 −20 7
−1 −9 3


59 = 12 + 72 + 32
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If we chose a different B, still having determinant 1, and still satisfying
C−1 = BBT , could we get a different representation of 59 as the sum of three
squares? Yes, but only via the obvious transformations. We can cycle the
columns of B, so the first column becomes the second, the second becomes the
third, and the third becomes the first. Also, we can negate any one column and
swap the other two. To put it another way, we could multiply B on the right
by any of these matrices:0 1 0

0 0 1
1 0 0

 ,
−1 0 0

0 0 1
0 1 0

 ,
0 0 1

0 −1 0
1 0 0

 ,
0 1 0

1 0 0
0 0 −1


These matrices generate a finite subgroup of SL3(Z) of order 24. We can actually
negate any two columns. We can also negate all three columns and swap any
two of them.

Including negative numbers, there are a total of 72 triples of x, y and z in Z
where 59 = x2 + y2 + z2. These 24 are associated with the principal ideal class:

5 5 3 | 3 5 5 | 5 3 5
−5 −5 3 | −3 −5 5 | −5 −3 5

5 −5 −3 | 3 −5 −5 | 5 −3 −5
−5 5 −3 | −3 5 −5 | −5 3 −5
−5 −5 −3 | −3 −5 −5 | −5 −3 −5

5 5 −3 | 3 5 −5 | 5 3 −5
−5 5 3 | −3 5 5 | −5 3 5

5 −5 3 | 3 −5 5 | 5 −3 5

And these 24 are associated with the class that includes [3, θ]:

7 1 3 | 3 7 1 | 1 3 7
−7 −1 3 | −3 −7 1 | −1 −3 7

7 −1 −3 | 3 −7 −1 | 1 −3 −7
−7 1 −3 | −3 7 −1 | −1 3 −7
−1 −7 −3 | −3 −1 −7 | −7 −3 −1

1 7 −3 | 3 1 −7 | 7 3 −1
−1 7 3 | −3 1 7 | −7 3 1

1 −7 3 | 3 −1 7 | 7 −3 1

Finally, these 24 are associated with the class that includes [3,−1− θ]:

1 7 3 | 3 1 7 | 7 3 1
−1 −7 3 | −3 −1 7 | −7 −3 1

1 −7 −3 | 3 −1 −7 | 7 −3 −1
−1 7 −3 | −3 1 −7 | −7 3 −1
−7 −1 −3 | −3 −7 −1 | −1 −3 −7

7 1 −3 | 3 7 −1 | 1 3 −7
−7 1 3 | −3 7 1 | −1 3 7

7 −1 3 | 3 −7 1 | 1 −3 7
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5 Case Study of a Hilbert Class Field

Every number field has a Hilbert class field, which has some truly remarkable
properties. It’s a Galois extension where the Galois group is isomorphic to the
ideal class group. Every ideal of the number field’s ring of integers becomes
principal when extended to the Hilbert class field’s ring of integers.

Our next case study will be the Hilbert class field for the imaginary quadratic
field from the last section. Recall that we had defined

θ =
−1 + i

√
59

2
≈ −0.5 + 3.84057i

K = Q(i
√

59) = Q(θ)

R = Z[θ]

The class number is 3, so the Hilbert class field must be a cubic extension of
K. We look around for a cubic polynomial with discriminant -59, and we find
x3 + 2x+ 1. This polynomial has three roots:

α1 ≈ −0.45340

α2 ≈ 0.22670− 1.46771i

α3 ≈ 0.22670 + 1.46771i

With a little calculation to get the sign right, we find

(α1 − α2)(α2 − α3)(α3 − α1) = i
√

59 = 1 + 2θ

Evidently Q(α1, α2, α3) is an extension of K. It’s enough to adjoin any one
of the roots to K. Let’s define α as the real root, that is, α = α1. Then K(α)
is the Hilbert class field.

Our first guess as to the ring of integers might be R[α], but that doesn’t
quite cover all the algebraic integers. To find the missing ones, let’s start by
examining how the other two roots relate to the first.

α2α3 = 2 + α2

(α1 − α2)(α3 − α1) = −2− 3α2

(α2 − α3)2 = −8− 3α2

(α1 − α2)(α2 − α3)2(α3 − α1) = 16 + 30α2 + 9α4

(1 + 2θ)(α2 − α3) = 16− 9α+ 12α2

The last equation lets us calculate α2 and α3 from α and θ. If we also add
59(4 + 3α) to both sides, then we can factor out the 12:

(1 + 2θ)(α2 − α3 − (1 + 2θ)(4 + 3α)) = 16− 9α+ 12α2 + 59(4 + 3α)

= 12(21 + 14α+ α2)
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We now have enough information to describe the ring of integers. If we set

β =
21 + 14α+ α2

1 + 2θ

≈ −1.93435i

then β is an algebraic integer, because

(1 + 2θ)β = 21 + 14α+ α2

−59β2 = 441 + 588α+ 238α2 + 28α3 + α4

= 413 + 531α+ 236α2

β2 = −7− 9α− 4α2

(1 + 2θ)β3 = −147− 287α− 217α2 − 65α3 − 4α4

= −82− 153α− 209α2

and from there we get β3 + (1 + 2θ)β2 − 27β − 4(1 + 2θ) = 0. It turns out that
R[α, β] is the ring of integers for K(α), so let’s define

L = K(α)

S = R[α, β]

Our basis for S over R will be {1, α, β}, so let’s get representations of α2,
β2 and αβ:

α2 = −21− 14α+ (1 + 2θ)β

β2 = 77 + 47α− (4 + 8θ)β

αβ = 5 + 10θ + (3 + 6θ)α+ 14β

Then these matrix equations show the effect of multiplying by α and β:

α

1
α
β

 = Mα

1
α
β



β

1
α
β

 = Mβ

1
α
β


where

Mα =

 0 1 0
−21 −14 1 + 2θ

5 + 10θ 3 + 6θ 14


Mβ =

 0 0 1
5 + 10θ 3 + 6θ 14

77 47 −4− 8θ


19



Any element ξ of S has a unique representation as ω1 +ω2α+ω3β for some
ω1, ω2 and ω3 in R. Then the matrix Mξ showing the effect of multiplying by
ξ is given by

Mξ = ω1 + ω2Mα + ω3Mβ

and the norm of ξ (for the extension L/K) is just the determinant of Mξ.
Next we’ll be looking at the Galois group of L/K, generated by σ which

takes α to α2. So σ cycles the roots of x3 + 2x+ 1:

σ(α) = α2

σ(α2) = α3

σ(α3) = α

We have these representations of α2 and α3:

α2 = 2 + 4θ + (1 + 3θ)α+ 6β

α3 = −2− 4θ − (2 + 3θ)α− 6β

Now let’s define

β2 = σ(β) =
21 + 14α2 + α2

2

1 + 2θ

β3 = σ(β2) =
21 + 14α3 + α2

3

1 + 2θ

We can then calculate these representations of β2 and β3:

β2 = 29− θ + 22α− (2 + 3θ)β

β3 = −30− θ − 22α+ (1 + 3θ)β

Then the effect of σ can be expressed via this matrix equation:σ(1)
σ(α)
σ(β)

 = Mσ

1
α
β


where

Mσ =

 1 0 0
2 + 4θ 1 + 3θ 6
29− θ 22 −2− 3θ


The matrix showing the effect of multiplying by σ(ξ) would be M−1σ MξMσ.
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Let’s take a quick peek at the Galois group of L/Q. This group has 6
elements. If we define ρ as complex conjugation, then the table below shows the
6 automorphisms and how they treat α, β and θ:

takes α to ... takes β to ... takes θ to ...
1 α β θ
σ α2 β2 θ
σ2 α3 β3 θ
ρ α - β −1− θ

σρ = ρσ2 α2 - β2 −1− θ
σ2ρ = ρσ α3 - β3 −1− θ

The Galois group of L/K is the subgroup {1, σ, σ2} that leaves θ unchanged.
In general, S might not have unique factorization. We know that every ideal

of R becomes principal when extended to S. But if an ideal splits, the factors
might not be principal. In that case, L would have its own Hilbert class field,
say L′. Then the Galois group of the extension L′/L would be abelian, as is
that of L/K. But L′/K would not be an abelian extension, since otherwise L′

would be the Hilbert class field for K. In some cases, there may be an infinite
tower of Hilbert class fields.

But in this particular case, it happens that S does have unique factorization.
Keep in mind though, for any given factorization of some element, we could
always multiply the left factor by a unit and then divide the right factor by the
same unit. For example, even in Z, we have 15 = 3 · 5 = (−3)(−5). There are
just 2 units in Z: 1 and −1. The same is true of R. But S has infinitely many
units. It turns out that the units of S are generated by α, α2 and α3. Since
αα2α3 = −1, we can always force the exponent of α to be 0, so each unit of S
has a unique representation as (−1)tαu2α

v
3, where t is either 0 or 1, and u and v

are in Z. For example, α = (−1)1α−12 α−13 .
With that out of the way, let’s do some unique factoring. We’ll start with

primes of Z that are not quadratic residues modulo 59, whose ideals therefore
stay inert in R. Each one splits into 3 primes in S:

2 = (1 + α)(1 + α2)(1 + α3)

11 = (2 + α)(2 + α2)(2 + α3)

13 = (2− α)(2− α2)(2− α3)

23 = (2 + α+ 2α2)(2 + α2 + 2α2
2)(2 + α3 + 2α2

3)

31 = (−1− 4α)(−1− 4α2)(−1− 4α3)

37 = (1− 2α+ 2α2)(1− 2α2 + 2α2
2)(1− 2α3 + 2α2

3)

43 = (3 + 2α)(3 + 2α2)(3 + 2α3)

47 = (6 + 13α)(6 + 13α2)(6 + 13α3)
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Next we’ll look at the primes of Z that are quadratic residues. Their ideals
split in R. The first case is where the factors are principal. We only had one
example of this from the last section: [17] = [2 + θ][1− θ]. Each of these factors
further splits into 3 primes in S:

2 + θ = (1− α3 + α−12 )(1− α+ α−13 )(1− α2 + α−1)

1− θ = (1− α2 + α−13 )(1− α+ α−12 )(1− α3 + α−1)

In the case where a prime of Z splits in R but the factors aren’t principal,
those factors stay inert in S. That is, they don’t split any further. But they
become principal. To find the generators, we’ll begin by considering these two
elements of S:

κ5 = 1− α2 − α−13 = 8− 7θ + (5− 5θ)α− (11 + θ)β

λ5 = 1− α3 − α−12 = 15 + 7θ + (10 + 5θ)α+ (10− θ)β

These elements have the following useful properties:

σ(κ5) = −α3 κ5

σ2(λ5) = −α2 λ5

It’s rare that an automorphism multiplies a particular element by a unit. Nor-
mally this would indicate a prime has ramified. For example, the complex
conjugate of 1 + 2θ is (−1)(1 + 2θ). That’s because [59] has ramified in R. But
here there is no ramification. You might say that κ5 and λ5 are ”almost” in R,
in the sense that they are almost invariant under σ and σ2.

Now recall that [5] = [5,−1− θ][5, θ] in R. It turns out that

[5,−1− θ] = [κ5]

[5, θ] = [λ5]

5 = κ5 λ5

We also had [3] = [3, θ][3,−1− θ] in R. Now let’s define

κ3 = κ5 θ/5 = 21 + 3θ + (15 + 2θ)α+ (3− 2θ)β

λ3 = λ5 (−1− θ)/5 = 18− 3θ + (13− 2θ)α− (5 + 2θ)β

Then we have

[3, θ] = [κ3]

[3,−1− θ] = [λ3]

3 = κ3 λ3

θ = κ3 λ5

−1− θ = κ5 λ3
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So the greatest common divisor that 3 and θ ”ought” to have really does exist
in S: it’s κ3.

The generators for the other non-principal ideals from the last section are
listed below. In each case, [p] = [p, κp λ3][p, κ3 λp] in R, and

[p, κp λ3] = [κp]

[p, κ3 λp] = [λp]

p = κp λp

p κp λp κp λ3 κ3 λp
7 κ3 (2− θ)/3 λ3 (3 + θ)/3 2− θ 3 + θ
19 κ3 (7 + θ)/3 λ3 (6− θ)/3 7 + θ 6− θ
29 κ3 (8− θ)/3 λ3 (9 + θ)/3 8− θ 9 + θ
41 κ3 (7− 2θ)/3 λ3 (9 + 2θ)/3 7− 2θ 9 + 2θ
53 κ3 (11 + 2θ)/3 λ3 (9− 2θ)/3 11 + 2θ 9− 2θ

Several things are worth noting here. First,

σ(α) = 2 + 4θ + (1 + 3θ)α+ 6β ≡ −1− 2α = α3 (mod [3, θ])

σ2(α) = −2− 4θ − (2 + 3θ)α− 6β ≡ −1− 2α = α3 (mod [3,−1− θ])

In fact, it turns out that for any element ξ of S,

σ(ξ) ≡ ξ3 (mod [3, θ])

σ2(ξ) ≡ ξ3 (mod [3,−1− θ])

which means that σ and σ2 are the Frobenius automorphisms for [3, θ] and
[3,−1 − θ], respectively. More generally, σ is the Frobenius automorphism for
any prime ideal in the same class as [3, θ] (in R), while σ2 is the Frobenius
automorphism for any prime ideal in the same class as [3,−1−θ]. This provides
the natural isomorphism between the ideal class group and the Galois group.

Then for each p where we’ve defined κp and λp, we have

σ(κp) = −α3 κp

σ2(κp) = −α−12 κp

σ2(λp) = −α2 λp

σ(λp) = −α−13 λp

κp + σ(κp) + σ2(κp) = κp λ5

λp + σ2(λp) + σ(λp) = κ5 λp

The last two equations give the trace of κp and λp, respectively.
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Now recall that the cube of any ideal in R is principal.

[3, θ]3 = [3− θ]
[3− 1− θ]3 = [4 + θ]

[5,−1− θ]3 = [11 + θ]

[5, θ]3 = [10− θ]
[7, 2− θ]3 = [−13 + 3θ]

[7, 3 + θ]3 = [−16− 3θ]

[19, 7 + θ]3 = [67 + 15θ]

[19, 6− θ]3 = [52− 15θ]

[29, 8− θ]3 = [−97− 35θ]

[29, 9 + θ]3 = [−62 + 35θ]

[41, 7− 2θ]3 = [−263− θ]
[41, 9 + 2θ]3 = [−262 + θ]

[53, 11 + 2θ]3 = [209 + 91θ]

[53, 9− 2θ]3 = [118− 91θ]

Then we get these factorizations:

3− θ = κ3 σ(κ3) σ2(κ3) = α3 α
−1
2 κ33

4 + θ = λ3 σ
2(λ3) σ(λ3) = α2 α

−1
3 λ33

11 + θ = κ5 σ(κ5) σ2(κ5) = α3 α
−1
2 κ35

10− θ = λ5 σ
2(λ5) σ(λ5) = α2 α

−1
3 λ35

−13 + 3θ = κ7 σ(κ7) σ2(κ7) = α3 α
−1
2 κ37

−16− 3θ = λ7 σ
2(λ7) σ(λ7) = α2 α

−1
3 λ37

67 + 15θ = κ19 σ(κ19) σ2(κ19) = α3 α
−1
2 κ319

52− 15θ = λ19 σ
2(λ19) σ(λ19) = α2 α

−1
3 λ319

−97− 35θ = κ29 σ(κ29) σ2(κ29) = α3 α
−1
2 κ329

−62 + 35θ = λ29 σ
2(λ29) σ(λ29) = α2 α

−1
3 λ329

−263− θ = κ41 σ(κ41) σ2(κ41) = α3 α
−1
2 κ341

−262 + θ = λ41 σ
2(λ41) σ(λ41) = α2 α

−1
3 λ341

209 + 91θ = κ53 σ(κ53) σ2(κ53) = α3 α
−1
2 κ353

118− 91θ = λ53 σ
2(λ53) σ(λ53) = α2 α

−1
3 λ353

[59] itself ramifies as [1 + 2θ]2 in R, and [1 + 2θ] splits into 3 primes in S:

1 + 2θ = (α− α2)(α2 − α3)(α3 − α)
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6 Case Study of an Elliptic Curve

Elliptic curves are a major topic of ongoing research. Roughly speaking, an
elliptic curve is defined by an equation where the square of a linear polynomial
in y (and maybe x) is equal to a cubic polynomial in x with nonzero discriminant.
An example is y2 = x3 + 4x. Elliptic curves are useful in cryptography and in
factoring large integers. Every elliptic curve over the complex numbers C is
equivalent to a differential equation of the Weierstrass elliptic function for some
lattice. If the lattice is an ideal of an imaginary quadratic field, then a property
known as the j-invariant belongs to the corresponding Hilbert class field.

For our final case study, we’ll examine an elliptic curve associated with
Q(
√
−19), which has class number 1. Then we’ll wrap up with a brief look at

the situation with Q(
√
−59). Let’s begin by defining

θ19 =
−1 + i

√
19

2
≈ −0.5 + 2.17945i

K19 = Q(i
√

19) = Q(θ19)

R19 = Z[θ19]

R19 has unique factorization. Here are the factorizations of the primes in Z
less than 19 that split:

5 = θ19(−1− θ19)

7 = (2 + θ19)(1− θ19)

11 = (3 + θ19)(2− θ19)

17 = (4 + θ19)(3− θ19)

The Weierstrass elliptic function ℘ takes a complex number z along with a
second parameter that specifies the lattice. When the lattice is generated by 1
and a complex number τ in the upper half plane, we can just specify τ as the
second parameter. Eventually we’ll be setting τ = θ19, but first let’s make a
few general comments about ℘. The definition is

℘(z; τ) =
1

z2
+

∑
m2+n2 6=0

{
1

(z +m+ nτ)2
− 1

(m+ nτ)2

}

Here the summation is over all m and n in Z where m and n are not both 0. In
other words, we’re summing over all nonzero lattice points m+ nτ .

As an elliptic function, ℘ is doubly periodic, meaning that

℘(z; τ) = ℘(z + 1; τ) = ℘(z + τ ; τ)

for all z in C. It is also meromorphic with a second order pole at 0, hence at
each lattice point.
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In fact, ℘ satisfies this differential equation:

℘′(z; τ)2 = 4℘(z; τ)3 − 4

3
π4E4(τ)℘(z; τ)− 8

27
π6E6(τ)

where E4 and E6 are the Eisenstein series of weight 4 and 6, respectively, nor-
malized so that the constant term of the q-expansion is 1. E4 and E6 are related
by this equation:

(j(τ)− 1728)E4(τ)3 = j(τ)E6(τ)2

where j is the j-invariant.
An important feature of ℘ is that for any a and b in C satisfying

b2 = 4a3 − 4

3
π4E4(τ)a− 8

27
π6E6(τ)

there exists z in C such that

℘(z; τ) = a

℘′(z; τ) = b

Further, any two such z values differ by some lattice point m+ nτ .
Now let’s focus on the case τ = θ19. Here are some approximate values:

E4(θ19) ≈ 0.99972896

E6(θ19) ≈ 1.00056916

It turns out that j(θ19) = −884736 = −512 · 1728, so the relation becomes

513E4(θ19)3 = 512E6(θ19)2

33 · 19E4(θ19)3 = 29E6(θ19)2

We’ll divide through by 23 · 36 · 194, so that the left side is a cube and the right
side is a square, and we’ll define v19 as the (positive real) 12th root of the result.

(v19)12 =
E4(θ19)3

23 · 33 · 193
=

26E6(θ19)2

36 · 194

v19 ≈ 0.30601616

(v19)4 =
E4(θ19)

2 · 3 · 19
(v19)6 =

23E6(θ19)

33 · 192

Now for any given z we can choose x and y such that

℘(z; θ19) = (v19πi)
2x

℘′(z; θ19) = (v19πi)
3(2y + 1)

After making these substitutions in the differential equation, and then dividing
through by 4(v19πi)

6, we get this equation:

y2 + y = x3 − 38x+ 90
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Below is a graph of the curve defined by y2 +y = x3−38x+ 90 over the real
numbers, with all 4 of its integral points marked, plus 2 more rational points.

r (4, 1)

r (4,−2)

r (0, 9)

r (0,−10)

rP r
Q

P = (57/16,−13/64)

Q = (57/16,−51/64)

p p p p p p p p p p p p p p p p p p p p p p p p p p p p p

Now let’s choose z19 ≈ 1.81462933i such that

℘(z19; θ19) = 0

℘′(z19; θ19) = 19(v19πi)
3

The table below shows how multiples of z19 generate the 6 marked points.

z ℘(z; θ19) ℘′(z; θ19) x y
−3z19 57(v19πi)

2/16 −19(v19πi)
3/32 57/16 −51/64

−2z19 4(v19πi)
2 3(v19πi)

3 4 1
−z19 0 −19(v19πi)

3 0 −10
0 ∞ ∞ ∞ ∞
z19 0 19(v19πi)

3 0 9
2z19 4(v19πi)

2 −3(v19πi)
3 4 −2

3z19 57(v19πi)
2/16 19(v19πi)

3/32 57/16 −13/64
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We’ll be referring to the quotient space C/R19, which is just the set of com-
plex numbers, except that any two complex numbers that differ by an element of
R19 are considered the same. So for example, all of the lattice points m+ nθ19
for m and n in Z are considered the same. We can think of R19 as chopping
up C into parallelograms. Then C/R19 is any one of those parallelograms. In
effect, we’re ”gluing” the two long edges of the parallelogram together, forming
a tube, and then gluing the two short edges together, forming a torus. Since ℘
is doubly periodic, it’s domain is really C/R19 for the case where τ = θ19.

From the table, we can see that the curve naturally includes the point at
infinity. So let’s define E19 as the subset of the complex projective plane con-
sisting of points (x, y, 1) where y2 + y = x3 − 38x + 90, along with the point
at infinity (0, 1, 0). Now define the map φ19 from C/R19 to E19 taking 0 to
(0, 1, 0), and taking any other z to (x, y, 1) where

℘(z; θ19) = (v19πi)
2x

℘′(z; θ19) = (v19πi)
3(2y + 1)

This is well defined and and in fact a bijection, because of the important feature
of ℘ mentioned earlier. We’ll still write (x, y) as a shorthand for (x, y, 1).

The map φ19 induces an abelian group structure on E19, based on ordinary
addition of complex numbers. For example, if we want to add (4,−2) and (0, 9),
the corresponding z values are 2z19 and z19. Adding these gives 3z19, and the
corresponding point on the curve is (57/16,−13/64).

Another way to define addition of points on the curve, which turns out to
be equivalent, is something called the group law. First, the ”negative” of (x, y)
is defined to be (x,−1−y). For example, the negative of (4, 1) is (4,−2). Then,
to add two points, we draw a line from one to the other (a tangent if they
are the same point). That line will intersect the curve at some third point.
The sum is then the negative of this third point. For example, if we’re adding
(4,−2) and (0, 9), we draw a line between these two points (as indicated by the
dotted line in the earlier graph). This intersects the curve at the third point
Q = (57/16,−51/64), whose negative is P = (57/16,−13/64). One advantage
of the group law is that it’s well defined even for fields other than C.

It turns out that our curve has only 4 integral points, which were shown on
the graph. Further, all of its rational points are generated by φ19(z19) = (0, 9).
The L-functions and Modular Forms Database has a lot more information about
this curve, labelled 361.a2, as well as other elliptic curves.

Note that for y2 + y = x3 − 38x + 90, if we take our rough definition of an
elliptic curve literally, we would need to add 1/4 to both sides, so that the left
side is the square of the linear polynomial y + 1/2. Then x3 − 38x + 90 + 1/4
is the cubic polynomial that would need to have nonzero discriminant. In fact,
it’s discriminant is −6859/16.

From the earlier graph, it may appear that the points P and Q are at the
narrows of the strait. Actually, both P and Q are at x = 57/16 = 3.5625, while
the narrows of the strait are at x =

√
38/3 ≈ 3.559026.

28

https://en.wikipedia.org/wiki/Quotient_space_(topology)
https://en.wikipedia.org/wiki/Torus
https://en.wikipedia.org/wiki/Projective_plane
https://en.wikipedia.org/wiki/Bijection
http://www.lmfdb.org
http://www.lmfdb.org/EllipticCurve/Q/361/a/2


Viewing the curve as defined over C, we can use complex multiplication
to find more points. If φ19(z1) = (x1, y1), we can ”multiply” by θ19, giving
φ19(z1θ19). This may be the point at infinity, or it may be some finite point
(x2, y2). In the latter case, it turns out that x2 and y2 are in K19 if x1 and y1
were. To get formulas for x2 and y2, let’s start by observing that every lattice
point is congruent to some integer from 0 to 4 modulo θ19. Therefore, if

℘(z1θ19; θ19) = ℘(z; θ19)

then
℘(z1; θ19) = ℘((z + n)/θ19; θ19)

for some integer n from 0 to 4. Now, for any z that’s not a lattice point, define

r(x; z) =

4∏
n=0

(
x− ℘((z + n)/θ19; θ19)

(v19πi)2

)
Then r(x1; z) = 0 when x2 is the x value for φ19(z). We’ll also define

s(x; z) =

2∏
n=1

(
x− ℘((z + n)/θ19; θ19)

(v19πi)2

)
where 2z/θ19 is a lattice point. If z itself is a lattice point, then s(x1; z) = 0
when φ19(z1θ19) is the point at infinity. Otherwise, s(x1; z) = 0 when x2 is the
x value for φ19(z) and x1 is not the x value for φ19(z/θ19). Here, we’re using
the fact that ℘ is even (that is, ℘(−z; τ) = ℘(z; τ) for any z and τ), so we can
skip n = 3 and n = 4.

Now we’re ready to define some polynomials:

f(x) = r(x; z19)

g(x) = s(x; 5/2) s(x; θ19/2) s(x; (5 + θ19)/2)

h(x) = θ19 s(x; 0)

The significance of these z values is that

℘(z19; θ19) = 0

℘′(5/2; θ19) = 0

℘′(θ19/2; θ19) = 0

℘′((5 + θ19)/2; θ19) = 0

So f(x1) = 0 when x2 = 0; g(x1) = 0 when y2 = −1/2 and y1 6= −1/2; and
h(x1) = 0 when φ19(z1θ19) is the point at infinity.
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It turns out that f(x), g(x) and h(x) have coefficients in R19:

f(x) = x5 − (20 + 2θ19)x4 + (285 + 95θ19)x3 − (1900 + 912θ19)x2

+ (5415 + 3249θ19)x− (5415 + 3971θ19)

g(x) = x6 − (30 + 3θ19)x5 + 209x4 − (247− 228θ19)x3

− (2166 + 1083θ19)x2 + (7581 + 1444θ19)x− 6859

h(x) = θ19x
2 + (5− 9θ19)x− (19− 19θ19)

And here are the formulas for x2 and y2:

x2 =
f(x1)

h(x1)2

y2 =
(y1 + 1/2)g(x1)

h(x1)3
− 1/2

Using a similar technique, we can ”multiply” by 1 + 2θ19 = i
√

19. Suppose
φ19(z1) = (x1, y1) as before, and φ19(z1i

√
19) is the finite point (x3, y3). We’ll

cut straight to the chase and give the formulas for x3 and y3. In this case, x3
and (y3 + 1/2)i

√
19 are in Q if x1 and y1 were. First some polynomials:

a(x) = x19 − 76x18 + 5054x17 − 155591x16 + 2434945x15 − 19040584x14

+ 26585484x13 + 918372087x12 − 9661738298x11 + 48640488756x10

− 138691257188x9 + 269949265178x8 − 1140580338964x7

+ 7880373251024x6 − 35376761814403x5 + 99387810915932x4

− 180382423058461x3 + 208456252765234x2 − 141014523929423x

+ 42917463804607

b(x) = x27 − 114x26 + 2907x25 − 23826x24 − 92055x23 + 1947956x22

+ 35659941x21 − 1613504301x20 + 35782367291x19 − 605388872807x18

+ 8216082753444x17 − 89676741297555x16 + 787915711500015x15

− 5572200663015159x14 + 31531215647001103x13

− 140154782001161498x12 + 466413205975279584x11

− 996237601605480048x10 + 224697769969846628x9

+ 8566669115109994056x8 − 41994854823066847719x7

+ 122614268298757271049x6 − 253081494420620179545x5

+ 381092989394649733302x4 − 413002350582826576439x3

+ 306566249439853960110x2 − 139826170012004721175x

+ 29563247373966712477

c(x) = x9 − 38x8 + 437x7 − 1444x6 − 7942x5 + 82308x4

− 274360x3 + 390963x2 − 130321x− 130321
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Then we have

x3 =
a(x1)

−19c(x1)2

y3 =
(y1 + 1/2)b(x1)

−19c(x1)3i
√

19
− 1/2

Here’s what complex multiplication looks like for (0, 9):

φ19(z19) = (0, 9)

φ19(z19θ19) = (180− θ19)/49, (−333 + 19θ19)/343)

φ19(z19i
√

19) = (−133, 13357/(2i
√

19)− 1/2)

and for (4,−2):

φ19(2z19) = (4,−2)

φ19(2z19θ19) = ((−4− 37θ19)/49, (−3686− 555θ19)/343)

φ19(2z19i
√

19) = (−870755/26011, 1595297757/(1924814i
√

19)− 1/2)

Keep in mind that y2 + y = x3− 38x+ 90 is not the only elliptic curve with
R19 as its lattice. We could substitute any nonzero complex number for v19 and
get a curve that’s equivalent over C. We chose v19 so that the Eisenstein series
would divide out, leaving integer coefficients. If we divide v19 by an integer,
we’ll get a curve whose rational points are in one to one correspondence with
those of y2 + y = x3 − 38x+ 90. For example, if we divide v19 by 3, we get

y2 + y = x3 − 3078x+ 65792

For each point (x1, y1) of y2 + y = x3− 38x+ 90, there is a corresponding point
(9x1, 27y1+13) of y2+y = x3−3078x+65792. For example, (4,−2) corresponds
to (36,−41).

If we divide v19 by the square root of an integer, we’ll get another curve,
known as a quadratic twist of the original curve. The twist may or may not
have rational points. In the case of dividing v19 by

√
−19, an interesting thing

happens, which ties into complex multiplication. The equation of the twist is

y2 + y = x3 − 13718x− 619025

which is labelled 361.a1. For each point (x1, y1) of the original curve, there is a
corresponding point (a(x1)/c(x1)2,−(y1 + 1/2)b(x1)/c(x1)3 − 1/2) of the twist.
For example, (0, 9) corresponds to (2527, 126891). This correspondence map
consists of first doing complex multiplication by −i

√
19, then multiplying x by

−19 and y + 1/2 by −19i
√

19. It happens that the rational points of the twist
are generated by (2527, 126891), so this is in fact a one to one correspondence
of rational points.
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Now let’s consider the case of Q(
√
−59). Recall that we had defined

θ =
−1 + i

√
59

2
≈ −0.5 + 3.84057i

K = Q(i
√

59) = Q(θ)

R = Z[θ]

Here are some approximate values for the Eisenstein series:

E4(θ) ≈ 0.999999992052

E6(θ) ≈ 1.000000016690

It turns out that

j(θ) = −215α−18(1 + α)3(2 + α)3

≈ −30197682742.993

where α is from the last section, where we studied the Hilbert class field of K.
Specifically, α is the real root of x3+2x+1. The relation between the Eisenstein
series then becomes

112α4(2 + α+ 2α2)2(3 + 2α)2(8 + 3α2)E4(θ)3 = 29(1 + α)3(2 + α)5E6(θ)2

Noting that (2 + α)(6− 2α+ α2) = 11, let’s define

µ = 23 · 33(1 + α)(2 + α)(8 + 3α2)

ν = 2 · 33α2(6− 2α+ α2)(2 + α+ 2α2)(3 + 2α)(8 + 3α2)2

Multiplying the relation by 22 · 39(8 + 3α2)3 and dividing by (2 + α)2, we get

33ν2E4(θ)3 = 22µ3E6(θ)2

We’ll divide through by 36µ3ν2, so that the left side is a cube and the right side
is a square, and we’ll define v59 as the (positive real) 12th root of the result.

(v59)12 =
E4(θ)3

33µ3
=

22E6(θ)2

36ν2

v59 ≈ 0.12064473

(v59)4 =
E4(θ)

3µ
(v59)6 =

2E6(θ)

33ν

Substituting ℘(z; θ) = (v59πi)
2x and ℘′(z; θ) = 2(v59πi)

3y, we then get

y2 = x3 − µx+ ν

I don’t know whether this curve has any points with x and y in the Hilbert
class field L = K(α), and if so, what the structure of the Mordell-Weil group
is. That would take some research to find out.
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Suppose we look at the lattice for the ideal [3, θ]. The corresponding τ value
is θ/3. The j-invariant is given by

j(θ/3) = −215α−183 (1 + α3)3(2 + α3)3 = σ2(j(θ))

Here, σ is from the last section, the automorphism that takes α to α2. So σ2

takes α to α3. The corresponding elliptic curve for this lattice will be

y2 = x3 − σ2(µ)x+ σ2(ν)

Similarly, the τ value for the [3,−1− θ] lattice is θ/5, and

j(θ/5) = −215α−182 (1 + α2)3(2 + α2)3 = σ(j(θ))

resulting in this curve:
y2 = x3 − σ(µ)x+ σ(ν)

The Mordell-Weil group for these last two curves will be found by applying σ2

and σ, respectively, to the Mordell-Weil group for y2 = x3 − µx+ ν.
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7 Afterword

The link between ideal classes and sums of three squares was the subject of my
senior thesis in college, almost 40 years ago. As I saw it, this was a remarkable
connection that wasn’t being discussed very much. It might help motivate
people to learn about ideal classes, since the sum of three squares is easy to
understand.

The other thing I recall from my college days was the absence of case studies.
The professor would dive right into some abstract topic, with little in the way of
concrete examples. When learning a new topic, I find it helpful to pick a sample
case that’s fairly representative, and then study that case in some depth. The
case studies I’ve presented here are the kinds I would love to have seen in college.

For me, pure mathematics is entertainment. It’s a game, like Dungeons
& Dragons. Only it’s more intricate and more elaborate than Dungeons &
Dragons could ever be. The rules aren’t created by a game writer. The rules
exist naturally, and we discover them gradually.

But the game is more fun if everyone can play. I’m glad to see that Wikipedia
now includes articles about a great deal of mathematics, making this information
available to the general public at no charge. I’ve tried to make my case studies
accessible to anyone with some high school math, who’s willing to follow the
Wikipedia links to read up on selected topics.

Another positive development is software packages like SageMath that make
mathematical computations much easier. When we consider that mathemati-
cians like David Hilbert didn’t have access to modern computers, their achieve-
ments are all the more impressive.

Intelligent beings in another galaxy will likely have very different biology,
history and literature. But their mathematics will be the same. They’ll still
have number fields, Hilbert class fields and elliptic curves, though with different
names. When we meet them, we can swap stories of our respective mathematical
discoveries. We can tell them that we’ve spent quite a bit of time on the Riemann
hypothesis, but haven’t been able to prove it yet. And they may confess they’ve
been stumped on that one for a while, too.

Or they may say ”hold my kanar” and then show us how it’s done.
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